нервные газы - определение. Что такое нервные газы
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое нервные газы - определение

Нервные сети
  • тип=journal}}</ref>

ИНЕРТНЫЕ ГАЗЫ         
  • 160px
  • 160px
  • 160px
  • 160px
  • alt=Диаграмма атомных оболочек неона, 2 электрона на внутренней оболочке и 8 электронов на внешней
  • энергии ионизации]]
  • Благородные газы в вакуумных стеклянных колбах, через которые пропущен ток
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • alt=Структура XeF<sub>4</sub>, одного из первых когда-либо обнаруженных соединений благородных газов
  • 160px
  • 160px
ГРУППА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ
Инертный газ; Благородный газ; 18 группа элементов; Инертные газы
то же, что благородные газы.
выхлопные газы         
  • Дым из выхлопных труб дизельного грузовика в момент запуска двигателя
  • Выхлопная труба легкового автомобиля
  • гребного винта]]
смесь газообразных продуктов, образующихся при работе двигателей внутреннего сгорания; содержит вредные для человека вещества (окись углерода и др.).
Инертные газы         
  • 160px
  • 160px
  • 160px
  • 160px
  • alt=Диаграмма атомных оболочек неона, 2 электрона на внутренней оболочке и 8 электронов на внешней
  • энергии ионизации]]
  • Благородные газы в вакуумных стеклянных колбах, через которые пропущен ток
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • alt=Структура XeF<sub>4</sub>, одного из первых когда-либо обнаруженных соединений благородных газов
  • 160px
  • 160px
ГРУППА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ
Инертный газ; Благородный газ; 18 группа элементов; Инертные газы

благородные газы, редкие газы, химические элементы, образующие главную подгруппу 8-й группы периодической системы Менделеева: Гелий Не (атомный номер 2), Неон Ne (10), Аргон Ar (18), Криптон Kr (36), Ксенон Xe (54) и Радон Rn (86). Из всех И. г. только Rn не имеет стабильных изотопов и представляет собой радиоактивный химический элемент.

Название И. г. отражает химическую инертность элементов этой подгруппы, что объясняется наличием у атомов И. г. устойчивой внешней электронной оболочки, на которой у Не находится 2 электрона, а у остальных И. г. по 8 электронов. Удаление электронов с такой оболочки требует больших затрат энергии в соответствии с высокими потенциалами ионизации атомов И. г. (см. таблицу).

Из-за химической инертности И. г. долгое время не удавалось обнаружить, и они были открыты только во 2-й половине 19 в. К открытию первого И. г. - гелия - привело проведённое в 1868 французом Ж. Жансеном и англичанином Н. Локьером спектроскопическое исследование солнечных протуберанцев. Остальные И. г. были открыты в 1892-1908.

И. г. постоянно присутствуют в свободном виде в Воздухе. 1 м3 воздуха при нормальных условиях содержит около 9,4 л И. г., главным образом аргона (см. таблицу). Кроме воздуха, И. г. присутствуют в растворённом виде в воде, содержатся в некоторых минералах и горных породах. Гелий входит в состав подземных газов и газов минеральных источников. Остальные стабильные И. г. получают из воздуха в процессе его разделения. Источником радона служат радиоактивные препараты урана, радия и др. После использования стабильные И. г. вновь возвращаются в атмосферу и поэтому их запасы (кроме лёгкого Не, который постепенно рассеивается из атмосферы в космическом пространстве) не уменьшаются.

Молекулы И. г. одноатомны. Все И. г. не имеют цвета, запаха и вкуса; бесцветны они в твёрдом и жидком состоянии. Наличие заполненной внешней электронной оболочки обусловливает не только высокую химическую инертность И. г., но и трудности получения их в жидком и твёрдом состояниях (см. таблицу). Другие физические свойства И. г. см. в статьях об отдельных элементах.

----------------------------------------------------------------------------------------------------------------------------------------------------------------

| | | | Атомные радиусы, | | При 1 атм. (Инертные газы100 кн/м2) |

| | Атомная | Содер­жание | | Первые | |

| Эле­мент | масса | в воздухе, |-----------------------------------| потенциалы |-------------------------------------------|

| | | об. \% | по А. | по В. И. | ионизации, в | tпл, °С | tкип, °С |

| | | | Бонди | Лебедеву | | | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Не | 4,0026 | 4,6·10-4 | 1,40 | 0,291 | 24,58 | -272,6* | -268,93 |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Ne | 20,179 | 1,61·10-3 | 1,54 | 0,350 | 21,56 | -248,6 | -245,9 |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Ar | 39,948 | 0,9325 | 1,88 | 0,690 | 15,76 | -189,3 | -185,9 |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Kr | 83,80 | 1,08·10-4 | 2,02 | 0,795 | 14,00 | -157,1 | -153,2 |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Xe | 131,30 | 8·10-6 | 2,16 | 0,986 | 12,13 | -111,8 | -108,1 |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Rn | 222** | 6·10-18 | - | 1,096 | 10,75 | около -71 | около -63 |

----------------------------------------------------------------------------------------------------------------------------------------------------------------

*При 26 атм. (Инертные газы2,6 Мн/м2). **Массовое число наиболее долгоживущего изотопа.

Долгое время попытки получить химические соединения И. г. оканчивались неудачей. Положить конец представлениям об абсолютной химической недеятельности И. г. удалось канадскому учёному Н. Бартлетту, который в 1962 сообщил о синтезе соединения Xe с PtF6. В последующие годы было получено большое число соединений Kr, Xe и Rn, в которых И. г. имеют степени окисления +1, +2, +4, +6 и +8. При этом существенно, что для объяснения строения этих соединений не потребовалось принципиально новых представлений о природе химической связи, и связь в соединениях И. г. хорошо описывается, например, методом молекулярных орбиталей (см. Валентность, Молекулярных орбиталей метод). Из-за быстрого радиоактивного распада Rn его соединения получены в ничтожно малых количествах и состав их установлен ориентировочно. Соединения Xe значительно стабильнее соединений Kr, а получить устойчивые соединения Ar и более лёгких И. г. пока не удалось. В большинстве реакций И. г. участвует фтор: одни вещества получают, действуя на И. г. фтором или фторсодержащими агентами (SbF5, PtF6 и т. д.), другие образуются при разложении фторидов И. г. Имеются указания на возможность протекания реакций Xe и Кr с хлором. Получены также окислы (Xe03, Xe04) и оксигалогениды И. г.

Кроме указанных выше соединений, И. г. образуют при низких температурах Соединения включения. Так, все И. г., кроме Не, дают с водой кристаллогидраты типа Хе․6Н2О, с фенолом тяжёлые И. г. дают соединения типа Хе․3С6Н5ОН и т. д.

Промышленное использование И. г. основано на их низкой химической активности или специфических физических свойствах. Примеры применения И. г. см. в статьях об отдельных элементах.

Лит.: Финкельштейн Д. Н., Инертные газы, М., 1961; Фастовский В. Г., Ровинский А. Е., Петровский Ю. В., Инертные газы, М., 1964; Крамер Ф., Соединения включения, пер. с нем., М., 1958; Бердоносов С. С., Инертные газы вчера и сегодня, М., 1966; Соединения благородных газов, пер. с англ., М., 1965; Коттон Ф., Уилкинсон Дж., Современная неорганическая химия, пер. с англ., ч. 2, М., 1969; Дяткина М. Е., Электронное строение соединений инертных газов, "Журнал структурной химии", 1969, т. 10, № 1, с. 164.

С. С. Бердоносов.

Википедия

Нервная сеть

Нервная сеть (биологическая нейронная сеть) — совокупность нейронов головного и спинного мозга центральной нервной системы (ЦНС) и ганглия периферической нервной системы (ПНС), которые связаны или функционально объединены в нервной системе, выполняют специфические физиологические функции.

Нервная сеть состоит из группы или групп химически или функционально связанных нейронов. Один нейрон может быть связан со многими другими нейронами, а общее количество нейронов и связей в сети может быть достаточно большим. Место контакта нейронов называется синапсом, типичный синапс — аксо-дендритический химический. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

С понятием "нервная сеть" тесно связано понятие "коннектом".

Представление о нервных сетях оказало значительное влияние на технологии искусственного интеллекта, в попытке построить математическую модель нервной сети был создан обширный инструментарий (искусственных) нейронных сетей, широко используемый в прикладной математике и информатике.

Нейроны объединены в последовательно расположенные слои. Отдельно выделены два крайних слоя — входной и выходной. Через входной слой нейросеть получает информацию, через выходной передает результат ее обработки. Все промежуточные слои называются скрытыми.

Каждый скрытый слой соединен с двумя соседними (предыдущим и следующим) сложной системой связей. В простейшем случае в каждый его нейрон попадают сигналы от каждого нейрона предыдущего слоя, обрабатываются, а затем из него уходят в каждый нейрон следующего слоя.

Что такое ИНЕРТНЫЕ ГАЗЫ - определение